
D-RI75 253 MICROCODE VERIFICTION USING
SDVS (STATE DELTA

1/1
VERIFICATION SYSTEM): THE..(U) AEROSPACE CORP EL

EGUNDO CA LB OPERTIONS I H LEVY 39 RUG 84

UNCLASSIFIED TR-0884(4778)-1 50-TR-96-54 F/G 9/2 N

EEEEEooEEE

, ii,%

a1.
0a41

.

a.1.8

MICROCOPY RESOLUTION TEST CHRT
'

NATIONAL 8UREAU OF STANDARDS ~ 963- ,A ;...-.:I .

[%-z •..

""-.

%~
-IAI 10

REPORT SD-TR-86-54

Microcode Verification Using SDVS:

U': The Method and a Case Study

B. H. LEVY
Information Sciences Research Office

Laboratory Operations
The Aerospace Corporation

El Segundo, CA 90245

1 October 1986

APPROVED FOR PUBLIC RELEASE:

DISTRIBUTION UNLIMITED DTIC
i-EcTE

UC18 1986'

C...

Prcparcd for

NATIONAL SECURITY AGE N('YI
9800 Savage Rd.

tort Georgc C. Meade, MI) 20755

SPACE)IVISION
AIR F()R(SYSIEMS ('(\IMANI)

Los AngCles Air Iforce SIali

P.O. Box 92960, World\\av Postal 'cnter
Los Angeles, ('A 90009-2960

S- . .-.......... -

TIIHE AEROSPACE CORIPOIRAT11ON

DOCUMENT CHANGE NOTICE

TO Distribution DATE 9 December 1986

SUBJECT TR-0086A(2778)- i FROM Publications

Please change the report number of this document to TR-0084(4778)-i

(block 6, DD Form 1473). This report and the work described therein

were completed 30 August 1984.

'-

4.

AESOSACE FORM 4518
e" W' W W ;% % ,_ i . " e ," " - . " °" ; -" . . -a.- " . " . " , " . " w " , " . - " -. -"a " . -" - ." ." " """ " ""

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (hen Data Entered)

REPORT DOCUMENTATION PAGE REDISRCINBE FORE COMPLE TING FORM

I. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

-- SD-TR-86-54 I' M '2.... -
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

MICROCODE VERIFICATION USING SDVS:
, THE METHOD AND A CASE STUDY 6. PERF UMBER

TR-00
7. AUTHOR(&) 0. CONTRACT OR GRANT NUMBER(e)

B. H. Levy

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

The Aerospace Corporation AREA A WORK UNIT NUMBERS

El Segundo, Calif. 90245

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Space Division 1 October 1986
Los Angeles Air Force Station 13. NUMBER OF PAGES
Los Angeles, Calif. 90009-2960 40

14. MONITORING AGENCY NAME & AODRESS(If different from Controlling Office) 1S. SECURITY CLASS. (of this report)

Unclassified
ISa. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered In Elock 20, It different from Report)

" IS. SUPPLEMENTARY NOTES

f9. KEY WORDS (Continue on reverse side If necessary and identify by block number)

verification correctness proofs
microcode theorem provers
symbolic execution formal machine descriptions
ISPS

20. ABSTRACT (Continue on reverse side It necessary and Identify by block number)

This report describes SDVS (State Delta Verification System), its applica-
tion to microcode verification, and the verification of a particular example
referred to as the H-machine example. The example illustrates how particu-
lar microcode that interprets a computer instruction set can be proved
correct and how this proof is accomplished with an existing, automated
verification system.

D FORM
CS 1413 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

.'

-" -- - - Vol - 1

CONTENTS

PREFACE 5

I. BACKGROUND 7

A. A NEED FOR NEW VERIFICATION METHODS 7
B. CORRECTNESS CRITERION 7
C. CORRECTNESS PROOFS 8

1. Symbolic Execution 8
a. Program States 11
b. Comparison of Rules for Symbolic Execution with Rules for Backward Substitution 12
c. State Delta Specification of ISPS 14

2. Symbolic Expression Simplification 17
3. induction 18
4. Mapping 19

D. WHY MICROCODE VERIFICATION? 21
E. MICROCODE VERIFICATION 22

II. A CASE STUDY 27

A. MACHINE DESCRIPTIONS 27
B. CORRECTNESS PROOF 29

III. FUTURE CONCERNS 35

REFERENCES 37

APPENDICES

A. ISPS DESCRIPTION OF TARGET MACHINE 39

B. ISPS DESCRIPTION OF HOST MACHINE 41

C. MICROCODE 45

D. ABSTRACT SPECIFICATION OF TARGET MACHINE 47

Accession For

NTIS GRA&I
DTIC TAB
Unannounced
Justification,

D str-ibut Jon/ __-----

Availability Codes
Avall and/ow

5o

S..Dist Special

, - - -

---I- g lill;* L 1 - . -- .r. . . .

FIGURES

1: HOARE STYLE PROOF OF REGSWITCH 13
2: SYMBOLIC EXECUTION OF REGSWITCH 14
3: STATE DELTA APPLICATION 15
4: REGSWITCH EXPRESSED AS THREE STATE DELTAS WITH EXPLICIT PROGRAM 16

COUNTER
5: REGSWITCH EXPRESSED AS ONE STATE DELTA WITH IMPLICIT PROGRAM 16

COUNTER
6: INCREMENTAL TRANSLATION OF REGSWITCH 16
7: SDVS PROOF OF REGSWITCH 17
8: HIERARCHY OF DIGITAL SYSTEMS 22
9: MICROCODE VERIFICATION USING SDVS 24
10: TARGET MACHINE 28
11: TARGET INSTRUCTIONS 29
12: HOST MACHINE 30
13: MICROINSTRUCTION FORMAT 31

3

.

7 4 17 .- .7.. ... ,. . ,. _- T Z-, IT 1.7K7 Z V . 2 7

PREFACE

This paper describes SDVS (State Delta Verification System), its application to microcode verification. and

the , crification of a particular example referred to as the H-machine example The example illustrates how

paruicular microcode that interprets a computer instruction set can be proved correct and how this proof is

accomplished with an existing, automated verification system. A shortened version of this paper will appear

in the Proceedings of the 17th Annual Microprogramming Workshop, IEEE Computer Society, New Orleans,

October 30-November 2. 1984.

I would like to acknowledge the following people at The Aerospace Corporation who developed the state

delta theory, implemented SDVS, and were exceedingly responsive to my questions and requests: Eve

Cohen, Jeff Cook, Steve Crocker, Jaisook Landauer, Leo Marcus, Hilarie Orman, and Bill Overman (no

longer at The Aerospace Corp.). I would also like to thank Mike Vahey and Ben Cohen from Hughes Aircraft

Co. for suggesting this example and for their encouragement.

.

*rv

SECTION I
BACKGROUND

The description of SDVS given in this report is not intended to be complete and is pro% ided as

background material. Other documents describe SDVS in greater detail 2154. The report was written with the

assumption that the reader is not familiar with correctness proofs, but is familiar with mathematical logic.

A. A NEED FOR NEW VERIFICATION METHODS

Computer systems are becoming too complex to verify using current methods. Hardware and software

sophistication have been increasing more rapidly than the sophistication of verification methodologies,

creating an ever widening gap between technology and verification capability. As a result, we cannot be

confident that the systems being developed properly implement system specifications. Verification problems

are costly, causing unnecessary expenditures of time, labor, and hardware.

Systems are currently verified using testing and simulation, methods which are not adequate for

% VLSI/VHSIC technology and today's large software projects. With testing or simulation a system is deemed

correct if correct results are produced for some small sample of input. The complexity of today's systems

makes thorough testing impossible because of the large number of potential inputs and execution paths.

ihus, systems are delivered and put into operation with a strong likelihood of undetected errors.

Excessive costs and risks will continue to be incurred unless new verification methods are developed.

As an alternative to testing our goal is to prove mathematically that an implementation satisfies its

specification (or requirements) for any, input. Both the theory and the tools are being developed to do these

correctness proofs for computer system implementations. The verification system being developed at The

Aerospace Corp. is called SDVS (State Delta Verification System).

B. CORRECTNESS CRITERION

Testing does not require formal specifications of system requirements. This permits requirements and

design documents to be written in English. which can be imprecise and ambiguous. Further, it is generally

impractical or impossible to test all potential input. Consequently, with testing there is no systematic and

consistent " ay to show that the implementation of a system satisfies the system requirements.

To eliminate ambigtt and lack of precision, formal n:mguages are used to describe system
requirements. Formal languages are a prerequisite for formal mathematical proofs. The correctness criterion

is a mathematical theorem stated in a formal language. The theorem states that the properties of the system

specification are preserved by the implementation (i.e.. the specification is consistent with the

implementation).
%-

C. CORRECTNESS PROOFS

'S. The correctness proof constitutes a verification of the implementation and is a proof of the correctness'S.

criterion. This proof is usually done with computer assistance because of the detail involved. Mechanical

theorem provers range in performance from trying to discover a proof to checking a proof created manually.

A formal logical language is required for the proof. Programming languages can be used as formal

languages for both system specifications and implementations. For example, the behavior of a computer

system is typically specified in a programming language (e.g., ISPS1). If this programming language can be

executed (or translated into an executable language) the behavior of a computer described this way can be

simulated or a software implementation written in the programming language can be tested. If the properties

of the programming language are formally defined (axiomatized), theorems might be proved about an

implementation or a specification written in the programming language. SDVS is used to perform these

proofs.

Proofs in SDVS involve symbolic execution, expression simplification, and induction. These topics are

discussed in the following sections. Sections on program states, rules for symbolic execution, and state delta

specification of ISPS explain the formalism necessary for symbolic execution in SDVS.

We have also incorporated a mapping construct into SDVS. Among other things, this allows us to
describe how a computer architecture is implemented by microcode operating on some hardware. A brief

description of mapping is given in the section following the discussion on induction.

1. Symbolic Execution

Symbolic execution combined with expression simplification (theorem provers) permits a greater range

of input evaluation than can be done practically with testing* . Whereas in testing a data value must be

supplied for each input variable, input variables are not set to values in symbolic execution."

The following example demonstrates the difference between testing and symbolic execution. The

programming language used in the example and in SDVS is ISPS. ISPS is a high level programming language

S.'mbolic execution is sometimes called the dynamic pan of the proof and expression simplification is called the static pan of the
proof

Another wa. of %ie-ing sNmbolic execution is that symbols are used to represent program inputs and a machine performs s mbolic
operations on symbols

,

. - - -- - - - - - -- 5. S .
o.5.5

.

commonly used to describe a computer's architecture. The following ISPS program swaps the contents of two

variables declared as registers (bitstrings):
REGSWITCH (X<15:0>, Y<15:0>) 1

BEGIN 2

** DECLARATION SECTION * 3
TEMP(15:0> 4

** SWAPPING FUNCTION ** 5
ENTRY (MAIN) 6

BEGIN 7
TEMP = X NEXT 8
X = Y NEXT 9
Y = TEMP 10

END 11
END 12

To test or simulate this program. data values are supplied for variables X and Y. For example, if X and

Y are initialized to values 4 and 1, respectively, then after the execution of REGSWITCH the values of X and

Y are 1 and 4. respectively.

On the other hand, there is no initialization in symbolic execution. After symbolic execution, the new

value of X is set to the old value of Y and the new value of Y is set to the old value of X. This is written as

(# X = .Y & #Y = .X) where a period placed before a variable indicates the value of the variable before

execution and a pound sign (" #") before a variable indicates the value of the variable after execution. Refer

to the formula (#X = .Y & #Y = .X) as Formula 1 in subsequent discussions.

Formula 1 specifies the behavior of the ISPS procedure REGSWITCH. Such formulas are written in a

first-order language with equality. The logical symbols of the language are & (and), V (or), * (implies), -1

(not). = (equal), and if-then-else

The nonlogical symbols with a fixed interpretation are taken from four quantifier-free theories:

integers. bitstrings, arrays, and coverings (set partitions). These theories define the data types in ISPS. The

non-logical symbols and their signatures (types) are:

1 !integers

predicate symbols signature descrimion
< integer X integer - boolean less than or equal
> integer X integer h boolean greater than or

equal
< integer X integer -- boolean less than
> integer X integer - hoolean greater than

function svmbols signature description

9

..

W intge X6 intge .1 nter addition7

+integer X integer -~ integer subdrtion

integer -~ integer arithmetic
negation

*integer X integer -integer multiplication

max integer X integer -~ integer maximum
Irmm integer X integer -~ integer minimum

integer X integer - integer exponentiation
/integer Xinteger -integer division

integer X integer - integer remainder

*ICONS integer X integer X integer -~integer integer construction

constant symbols signature description
-- 1012... integer the integers

2) bitstrings

function symbols signature description
Ih bitstring - non-negative integer length
usva! bitstring -~ non-negative integer value

ussub bitstring X integer X integer -~ bitstring substring

- ~ usconc bitstring X bitstring -~ bitstring concatenation
useqi bitstring X bitstring -~ bitstring equality

*usneq bitstring X bitstring -~ bitstring non-equality
usiss bitstring X bitstring -~ bitstring less than

usleq bitstring X bitstring -~ bitstring less than or equal

usgrr bitstring X bitstring -~ bitstring greater than

*usgeq bitstring X bitstring - bitstring greater than or
equal

-usplus bitstring X bitstring -~ bitstring addition
*usd~fference bitstring X bitstring -~ bitstring subtraction

usnot bitstring X bitstring -~ bitstring logical negation
ustimes bitstring X bitstring -~ bitstring multiplication
usquotient bitstring X bitstring -~ bitstx-ing quotient

.. usremainder bitstring X bitstring - bitstring remainder
usnot bitstring - bitstring logical negation
usand bitstring X bitstning -~ bitstring logical conjunction
usor bitstring X bitstring - bitstring logical disjunction

*usxor bitstring X bitstring - bitstring logical exclusive

-. 5 disjunction

*useqv bitstring X bitstring - bitstring negation of usxor
zeros integer -~ bitstring bitstring of all zeros
ones integer -~ bitstring bitstring of all ones
la stone bitstring - bitstring bitstring low -order

1 index

constant symbols sipnature descrivtion
bs(x .) bitstring constant bitstring
where X and y are integer constants of value X and

length Y

10

• " 3)arrays

function symbols siignature description
slice array X integer X integer . array select subarray
element array X integer - U select array element
where U E {integers, bitstrings, arrays. coveri-'gs}
range array - integer array length
aconc array X array array arra

concatentation

4) coverings (set partitions)

predicate symbols signature description
covering set - boolean set partition
pcovering set+ - boolean partial set partition
afldisjoint set 4 - boolean pairwise disjoint

constant symbols signature description
emptyset set the empty set

The axioms for the four theories are not listed in this report, but can be found ii, the SDVS reference

manual. Theorems about ISPS programs are deduced from the axioms and the rules for symbolic execution

which are explained below.

a. Program States

Formula 1 is called a postcondition. One says that the result of symbolically executing REGSWITCH is

given by the postcondition or that the postcondition is consistent with the program REGSWITCH. The

postcondition is a component of a state of the ISPS program. The state of the program is defined as:

1) the current value of the program's variables (including the postcondition)

2) the value of the program counter

3) the path condition (the set of assumptions previously made)

A boolean expression is added to the path condition whenever a decision is encountered in the program.

Formula 1 describes the current value of the programs variables when the program counter is 12 (the last

instruction) and the path condition is the formula true (i.e.. there are no branches in the program). There is a

state change after the execution of each ISPS instruction, and thus. the program counter is a component of a

state. Formula 1 specifies values of variables in the final state.

The state changes are specified by defining a rule for symbolic execution for each program statement.

These rules must be sound and agree with the programming language semantics.* For example, in the

These rules are often used as the definition of the semantics

11

4"

procedure REGSWITCH there are three assignment statements. \khose execution results in three state

changes. The rule for symbolic execution of the assignment statement is used belo\N to demonstrate s% mbolic

execution.

b. Comparison of Rules for Symbolic Execution with Rules for Backward Substitution

Most verification systems are based on the "Hoare proof system. 3 The Hoare proof system is briefly

described below in terms of the assignment statement and compared to SDVS, SDVS being a variation of the

Hoare proof system.

In the Hoare proof system there is a formula of the form P{S}Q for each programming language

statement S. The formula P{S}Q asserts that if formula P is true before executing S and S halts, then the

formula Q is true after executing S. P is called the precondition and Q is called the postcondition. These

formulas comprise the set of axioms describing the programming language behavior and are used to generate

lemmas. The proof of the lemmas guarantee a program is consistent with its specification.

For example. the execution of the assignment statement X = e, where X is a program variable and e is

an expression, results in a state change in which the value of variable X is changed. the program counter is

incremented, and the path condition remains unchanged. In more detail, all occurrences of variables in

expression e are replaced with their values and the new value of variable X is the evaluated expression e. The

backward substitution axiom for assignment is PXJX = e}P, where P X means substitute the expression e fore e

all free occurrences of X in formula P.

A specification for the correctness criteria for REGSWITCH written in the Hoare proof system is

(X =.X & Y =.Y {TEMP = X NEXT X = Y NEXT Y = TEMP} X =.Y & Y =.X). With one additional rule

we can prove that this formula is true. The additional rule, commonly referred to as the composition rule,

specifies the behavior of a sequence of instructions. The rule is written

P{O1R. RISIT
P{Q NEXT S}T

and means that if the formulas abo\ e the line are true (all axioms are true), then the formula below the line is

true.

A Hoare style proof of the correctness of REGSWITCH is as follows:

1) X =.Y & TEMP=.X {Y =TEMP} X =.Y & Y=.X (assignment axiom)

2) Y =.Y & TEMP = .X {X Y} X = .N & TEMP= .X (assignment axiom)

12

.*v

3) Y=.'& TEMP =.X {X = YNEXT Y=T -'I.MP} X =.Y& Y =.X
(1,2. and composition rule)

4) Y = .Y & X = .X {TEMP = X} Y = .Y & TEMP- .X (assignment axiom)

5) Y = .Y & X = . {"TEMP = X NEXT X = Y NEXT Y = TEMP} X = .Y & Y =.X
(3,4, and composition rule)

This proof is typically displayed as an annotated flowchart as in Figure 1.

TRUE =>

Y .Y&X =.X

TEMP X

Y .Y&TEMP A

X .Y&TEMP A

Y =TEMP 1
X .Y = A

Figure 1: Hoare style proof of REGSWITCH

In summary, the Hoare proof system consists of axioms for each programming language statement (e.g.,

assignment axiom) and rules for inferring new theorems from the axioms (e.g., composition rule). In Figure 1

ve started with the postcondition pushing it backward through the program resulting in the weakest

precondition, i.e., the minimum assumption necessary for the postcondition. Alternatively, we could have

started with the precondition pushing it through in the forward direction resulting in the strongest

postcondition, a total specification of the variables' values in the final state. This is called symbolic execution.

Figure 2 shows the proof of REGSWITCH using symbolic execution.

The major difference between backward substitution and symbolic execution using SDVS is that partial

correctness is usually proved using backward substitution and total correctness is proved with SDVS. Partial

correctness means that a program is proved correct assuming that the program halts. With SDVS's symbolic

execution only halting programs are proved correct. For non-halting programs the symbolic execution does

not halt and the postcondition is never satisfied.

13

* X = .X&Y = .Y&TEMP .TEMP

TEMP = .X

X AX&Y= Y& TEMP=A

X Y Y& Y =.Y&TEMP=A

Y TEMP

X .Y&Y =.X &TEMP =.X =>

Figure 2: Symbolic Execution of REGSWITCH

c. State Delta Specification of ISPS

.. ", 1), S I 1P programs are svmbolicall\ executed. Axioms describing the symbolic execution of each

IS,- , i-_,,ion arc formulas called state deltas. A state delta is of the form

[prc P
en F
mod 0
post: QJ

'Ahere P is the precondition and Q is the postcondition, both written in the first-order language described

abo'e. P and Q are analogous to the precondition and postcondition in formulas of the Hoare proof system.

As each formula P{S}Q defines a state change, each state delta also specifies a state change. The

programming language statement, S, is not explicitly stated in the state delta. This means the state delta is a

formula in which no distinction is made between control and data. "E" and "M" in the state delta

specification are lists of program variables and/or program counters. E and M are not necessary for symbolic

execution. but facilitate the application of state deltas for symbolic execution.

A state delta specification is defined for each ISPS statement. These are axioms of the proof system.

S mbolic execution is the application of these axioms in a proof. A state delta can be used in a proof if the

variables in its environment list E have remained unchanged since the state delta was first proved, and if the

precondition P is true in the current state. The result of the state delta application is that the postcondition Q

will be true at some later time at which the values of no variables other than those listed in the modification

*list M have changed.

14

%i %.. ,

The application of a state delta in a proof can be explained in terms of the timeline shown in Figure 3

where time El comes before t2 and t2 before t3.

state delta proved precondition true, postcondition true
state delta applied

Ionly variables invariables in environment modlification list have
list have not changed changed

ti t2 t3

Figure 3: State Delta Application

A formula expressed as a state delta is true at t. This formula can be used in a proof at a later time t2 if the

precondition becomes true and the variables in the environment list have not changed between tI and t2. The

application of the state delta results in a state change at time t3 where the new state is consistent with the

postcondition and only the variables in the modification list have changed. The modification list relieves the
pre- and postcondition of the burden of copying static information (information that does not change during

the state change) forward through the proof. In the context of microcode verification, the environment list

may relieve the pre- and postcondition of the need to contain control information (e.g.. the ISPS program

counter) and also the context in which the state delta was first proved (e.g., ROM cannot change before the

state delta is applied in a proof).

Examine again the body of the REGSWITCH procedure. This computation can be represented by

three state deltas where the ISPS program counter (upc) is explicit, or by one state delta where upc is implicit

from the state delta's nested structure. Figure 4 depicts the three assignment statements as three state deltas

and Figure 5 depicts the same program segment as one state delta.

As shown in Figure 5, a state delta can be part of the postcondition of another state delta. When this

occurs, it means that if the precondition of the main state delta is true, the state delta(s) in the postcondition of

the state delta is(are) also true and may be applied. The state delta in the postcondition in Figure 5 specifies

the next instruction, replacing the explicit reference to upc. Because upc is in both the environment and

modification lists of each state delta in Figure 5, each of these state deltas can only be applied once in a proof.
If the three assignment statements were embedded in a repeat loop their associated state deltas would be

applied repeatedly in a proof: upc would not be listed in any of the state deltas' environment lists.

The nested state delta structure is useful if the translation of an ISPS program to state deltas is

incremental; i.e., just before an ISPS instruction is symbolically executed; its state delta is generated. This is

15

,..? ,PN -. .. . ,?... , . .,. ,. . -

[pre: .REGSWITCH\upc = 8 State Delia I
env:
mod: REGSWITCH\upc, TEMP
post: #TEMP = .X & # REGS\\WITCH\upc =9]

[pre: .REGSWITCH\upc = 9 State Delta 2
env:
mod: REGSWITCH\upc, X
post: #X = .Y & #REGSWITCH\upc = 10]

[pre: .REGSWITCH\upc = 10 State Delia 3
env:
mod: REGSWITCH\upc. Y
post: #Y = .TEMP & #REGSWITCH\upc = 11]

Figure 4: REGSWITCH Expressed as Three State Deltas with Explicit Program Counter

[pre: REGSWITCH\upc = 8 SD I
env: REGSWITCH\upc
mod: REGSWITCH\upc. TEMP
post: #TEMP = .X & [pre: true SD 1.1

env: REGSWITCH\upc
mod: REGSWITCH\upc. X
post: #X= .Y &[pre: true SD 1.2

env: REGSWITCH\upc
mod: REGSWITCH\upc, Y
post: #Y = .TEMP]]]

Figure 5: REGSWITCH Expressed as One State Delta with Implicit Program Counter

desirable for reducing execution time and storage (SDVS has an incremental ISPS translator). If S1...Sn are

ISPS statements and TR is a function that translates ISPS programs to state deltas then the translation of a

sequential program segment is TR(S1 NEXT...NEXT Sn)= TR(S1)TR(S2 NEXT...NEXT Sn). Figure 6

shows the first incremental translation of the three assignment statements in REGSWITCH.

[pre: REGSWITCH\upc = 8
env: REGSWITCH\upc
mod: REGSWITCH\upc, TEMP
post: #TEMP = .X & TR(X = Y NEXT Y = TEMP)]

Figure 6: Incremental Translation of REGSWITCH

We have demonstrated the translation of assignment statements and sequential program segments to

state deltas. Similarly, there are translations for branching, loops and procedure calls.

The proof of REGSWI[CH using state deltas (in the nested structure) as axioms of the proof system is

16

%'.

#Y=.x &

#TEMP=.X #TEMP=.X # TEMP =.X

*SID 1 true apply SID 1 SID 1.1 true apply SID 1.1 SID 1.2 true apply SD 1.2

upc has not only upc ap a o ndy Xp upc has not andy p
cagad TEMP chagd adX changed an Y

can change cagd can change Ican change

ti t2 t3 t4 t5 t6 t7

can no longer can no longer can no! longer
apply SID 1 apply SID 1.1 apply SID 1.2

REGSWITCH
specif ication

satisf ied

Figure 7: SDVS Proof of REGSWITCH

shown in Figure 7. The state deltas specifying the three assignment statements are used in the proof at times

tC. t4. and t6. Because upc is in the modification list. upc may change value. Once axiom SD1, SID 1.1. or SD

1.2 is used it cannot be used again because upc is also in the environment list.

2. Symbolic Expression Simplification

Notice that the result of symbolically executing REGS WITCH is the strongest postcondition (#Y

J* .X & #X = .Y & #TEMP = AX), and the formula specifying the behavior of REGSWITCH is (#Y=.X &

#= .Y). Therefore, the following lemma must be proved to show the specification is consistent with the

program: ((#Y=.X & #X=.Y & #TFEMP=.X) ==:(#Y=.X & #X=.Y)). This is trivial to show. but for

more complex programs the lemmas generated from either a Hoare proof system or SDVS may require

* lengthy proofs using the axioms in the first-order language. Symbolic execution (the application of symbolic

* execution axioms written as state deltas) is comnpletelx automated. However, the simplification of a symbolic

expression and the proof of consistenic with the postcondition is partially automated using a theorem proN er.

Simplification is an interactiveI process and may require user assistance. The theorem pro~er uses axioms in

the theories of integers. bimstrings. arraxs. and coverings. SL)VS automatically applies some of the axioms in

.

proofs via pattern matching and demons. Other axioms are invoked by the user when needed, thus avoiding

unnecessary expression simplification and reducing execution time.

17

tl t2 t.t4t5 6.t

3. Induction

In order to prove theorems about programs containing loops, we use induction over a set ordered like

natural numbers' we want to show without testing each possibility that a property holds no matter how many

(finite) number of times the loop is executed. The property is frequently called the loop invariant, abbreviated

INV. The rule of induction for loops in SDVS is:

Basis
[pre: true
env: (E)
mod:
post: ((#X =initial) & INV)]

Induction Step
[pre: ((initial< .X < final) & INV)
env: (E1)
mod: (M1)
post: ((#X =.X + 1) & INV(.\#))], E1 disjoint from M,

Conclusion
[pre: (initial < final)
env: (EUE1)
mod: MI
post: ((#X = final) & INV

To demonstrate the induction rule consider the following ISPS program fragment called

LOOP-DEMO:

B=1 NEXT 1
C=A NEXT 2
L REPEAT 3

BEGIN 4
IF B > 100 => (LEAVE L) NEXT 5
B = B+1 NEXT 6
C = C+A 7
END 8

We want to prove if 1 < B < 100 then the loop invariant of LOOP-DEMO is (#C = #B*.A). B is the loop

variable. If we can prove:

Basis
[pre: .upc =
env:
mod: upc
post:((#B=1)&(#C = #B*.A)&(#upc = 4))]

and

18

q.'................."..............,.................,.,,,......-........... -. *

Induction Step
[pre: ((1 < .B < 100) & (.C = .B* .\) & (.upc = 4))
env:

mod: upc. B. C
post: ((#B=.B - 1) &(#C= #B*.A)&(#upc = 4))]

then we can conclude

[pre: .upc = 4
env:

mod: upc, B, C
post: ((#B=100) & (#C = #B* A)&(#upc = 4))]

thereby avoiding executing the loop 100 times.

The basis is true at the beginning of the repeat loop because

1) #B= 1 as the result of the assignment statement on line 1

2) #C = # B* .A because #C = .A fromline2and #C = .A =1 *.A = B*A

The induction step is true because

1) #B B + 1 from line 6

2) #C= #B*.A because #C=(.B*.A) + A from line 7 and #C=(.B*.A) + (.A*1) = (.B+1) *.A
= # B*.A

4. Mapping

States in implementation the are a function of states in the specification. A mapping construct is

necessary when state components in the specification have different names and structure than the

corresponding state components in the implementation. This situation arises quite naturally in the microcode

verification problem where the computer language specification and machine descriptions are derived

independently. A mapping shows how the computer language behavior is implemented.

For example. consider using the program REGSWITCH as a specification. The theorem stating the
correctness criterion of REGSWITCH can be written

[pre: (ISPS REGSWITCH)
.REGSWITCH\upc = REGSWITCH\STARTED

env:
mod: ALL
post: #Y=.X #X=.Y

REGSWITCH\upc = REGSW ITCH\HALTED]

where (ISPS REGSWITCH) is an abbreviation for the formula in Figure 6 (i.e., (ISPS REGSWITCH)

19

-"i,,' . -; -? . -3. '--.'.-.3.- .: .-- :-.'.2: ...;-.,'..-.-~.-..........:,...,.,,.-,.-,.--..... ,,.,

abbreviates the set of state deltas resulting from the translation of the ISPS program). and STARTED and

HALTED are SDVS defined labels for the first and last lines of the ISPS program.

Suppose REGSWITCH (an ISPS program) was implemented by the following ISPS program called

IMPLSWITCH:
IREGSWITCH(IX(15:0>,IY<15:0>,AC(15:0>)

BEGIN

DECLARATION.SECTION **

ITEMP<15:0>

** SWAPPING.FUNCTION **

ENTRY (MAIN)
BEGIN

ITEMP = IY NEXT
AC = IY NEXT
IY = IX NEXT
IX = ITEMP

END
END

The variables X and Y are implemented as IX and IY. respectively. Each state change in REGSWITCH does

not correspond to each state change in IMPLSWITCH. but the desired property that #Y = .X & #X = X

holds at the end of IMPLSWITCH. The following theorem states that IMPLSWITCH implements the
desired property that holds in REGSWITCH:

[pre: (ISPS IMPLSWITCH)
(MAP X (IX) EQ)
(MAP Y (IY) EQ)
(MAP TEMP (IREGSWITCH\OTHERSTUFF))
(MAP REGSWITCH\OTHERSTUFF (AC ITEMP))
(MAP REGSWITCH\upc (IREGSWITCH\upc))
(ONE-TO-ONE MAPFUNCTION)
REGSWITCH \STARTED = MAPFUNCTION (IREGSWITCH\STARTED)
REGSW ITCH\HALTED = MAPFUNCTION(IREGSWITCH\HALTED)

env:
mod:

post: (ISPS REGSWITCH)]

where the "MAP" terms in the precondition of the theorem specify which objects in IMPLSWITCH

implement objects in REGSWITCH, and empty environment and modification lists reduce the state delta to

a formula that is an implication (i.e., pre = post). OTHERSTUFF is an SDVS defined variable; it does not

appear in the ISPS programs. The variable TEMP in REGSWITCH is not implemented (i.e., it is an auxiliary

variable). This is specified by mapping TEMP to OTHERSTUFF in IMPLSWITCH. Similarly, AC and

ITEMP in IMPLSWITCH do not correspond to any variables in the specification, REGSWITCH. The

predicate symbol EQ in a MAP construct means that the value of the variables in the construct are equal.

Finally, ONE-TO-ONE specifies that its argument is a one-to-one function. Using the map construct. it is

20

.,. . ,, j. . . l. - . ". -_ ,..... ,.....*; .. ./ ,- . -. -, . ..- .,p. ,

possible to pro~e that (1) one ISPS program is implemented by another program or (2) one ISPS program

rnplcments an abstraction of another program.

D. WHY MICROCODE VERIFICATION?

SDVS de'elopers are focussing on microcode verification because microcode is used extensively in

computer systems, and microcode is among the most heavib used software in computer installations.

Additionally. microprogrammable hardware is becoming more complex and will have larger control stores.

As a result. the design time, cost, and risk of error are increasing, and the necessity for reliable microcode is

becoming more acute. Therefore. the dexelopment and application of analytical software verification

techniques to microcode will have great payoff.

Prior to the advent of microcode, the hardware directly executed the computer instruction set. The

architecture of the computer was established when the components of the computer were assembled. Thus.

the computer's functional operation could not be changed except by hardware modification.

Microcode allows the design of a computer to be more flexible. Instead of directly executing the

computer instruction set the hardware interprets the computer instruction set by executing microcode. In

other words. microprogramming involves programming the control unit of a computer.

With microcode. there can be more than one instruction set on a single computer. This means that (1)

programs written for older computers can run on new computers. (2) a computer can be tailored to a

particular application (e.g., signal processing), and (3) new computer languages (e.g., 1750A) can be

implemented on existing computers. Microcode also permits more than one computer model for an

instruction set. Therefore, families of computers can have the same instruction set, allowing growth potential

,A ithout reprogramming for each new computer installation. IBM took advantage of this concept when it

introduced System 370: the System 370 has the same instruction set as the previous computer system, the

System 360.

Not only is it important to focus on microcode \erification because of the widespread use of microcode

and the critical role microcode plays in computer systems. but application of \erification methods to
Pmicrocode reveal, new issues in specification languages. in the relationship of specifications to

implementations. and in the de\elopment of theories. A theory of bitstrings based on the theory of integers

has heen constructed for this application.

21

-. ,... -o... ., ,,. ,-.. .- - .,,.- ,......'.. -. ,

E. MICROCODE VERIFICATION

The diagram in Figure 8 represents the hierarchy of conceptual levels of a digital system that SDVS

currently considers.

computer language program spec/algorithm

' computer language semantics +

host machine ' +

Figure 8: Hierarchy of Digital Systems

Each level of the hierarchy utilizes or is implemented by the level below it. The upward pointing arrows

represent implementations: particular computer language semantics (behavior) are implemented by some

host machine executing microcode and a program specification or algorithm is implemented by a computer

language program that behaves in a predictable manner. The correctness criterion of each implementation is

stated as a mathematical theorem.

Microcode verification is concerned with the relationship of the "computer language level" to the

"microcode level". We want to show that a computer operating on some particular microcode correctl\

implements a computer instruction set.

The data structures at the microcode level include registers. control circuits, and data buses. The

operations include transfers of data between data structures and arithmetic operations. Data structures and

operations at the instruction set level are generally more abstract than at the microprogramming level. For

example, at the instruction set level, the arithmetic\logical component of a computer can be viewed as a
N;"black box": it performs arithmetic and logic operations when operands are supplied. At the microcode level.

the arithmetic \logical unit consists of many registers and data paths manipulated by control circuits.

A t~pical instruction in a computer instruction set is a LOAD instruction. The execution of a LOAD

IN

'.49

22".

;i:struction causes data in memory to be mo ed to a register. At the microcode level, the hardware decodes

",." LOAD instruction and executes a microprogram that \5ill establish data paths among a network of

* i-ctiers and data buses to perform the loading function.

To prove that microcode correctly implements a computer instruction set we need to formally specify

the behavior of the microcode in addition to specifying the behavior of the computer instructions. The

specifications of the microcode behavior and the instruction set behavior are merely descriptions of the

computer at different levels of abstraction. The behavior of the computer instructions is specified by defining

the computer at a lexel of abstraction seen by the programmer. The specification of the computer at the

microcode level is more detailed: it contains registers. operations. and programs hidden from the

programmer. Our goal is to prove that the descriptions of the computer at different levels of abstraction are

consistent.

The specifications of the computer can be described in the formal language of state deltas. Theorems

can be deduced from these specifications. Alternati,,el, the specifications can be described in ISPS and then

translated to state deltas: an, computation that can be described in ISPS* can be described in terms of state

deltas. The advantages of using ISPS are:

1) it is easier to write a specification in ISPS

2) a fast evaluation of the specifications can be made by using existing ISPS simulators and compilers

3) there exist many ISPS descriptions of computers

The theorem stating the microcode correctness criteria takes the form that the microcode behavior

implies the instruction set behavior (i.e., the properties of the instruction set are preserved in its

implementation, the microcode executing on the host machine). Both the host machine and the instnction

set behavior are specified as ISPS programs. Therefore, the correctness proof involves showing that one

program is correctly implemented by another program. Intuitively, it might be expected that all states and

state changes at the instruction set level (the "target machine") must correspond to selected states and state

changes at the microcode lexel (the "host machine"). However, only selected states and state changes in the
target machine may correspond to those of the host machine because

1) the effect of a sequence of state changes may be implemented by a differently ordered sequence

21) auxiliary variables used to describe the target machine ma\ not be implemented

3) various behasiors at the target le\el may not be describable in ISPS

ie the subset of ISPS used in [)\ SI

23

It is expected that the third item above will occur in very few situations and those behaviors can be described

in the logical language. Annotations (e.g.. labels. logical formulas. lists of variables) inserted in the ISPS

description of the target machine enable SDVS to extract the selected states and state changes. Thus. we

anticipate that an annotated ISPS program of the target machine will suffice and SDVS will derive an

"abstract specification" of the computer language semantics from the annotated ISPS program of the target

machine.

Recall that a state consists of the current values of the variables, the value of the program counter. and

the path condition. If the ISPS description of the machine is labeled. a state change results when the

computation progresses from one label to the next. The labels in the program mark a path through the

program, and thus implicitly denote the program counter and path condition. Consequently, the mapping

from a state in one machine to a state in another machine is partitioned into two types of mapping: (1) labels

in one ISPS description are mapped to labels in the other machine's ISPS description, and (2) variables of one

ISPS description are mapped to variables of the other machine's ISPS description.

Figure 9 shows how SDVS is used to prove that the host machine executing particular microcode

correctly implements the target machine.

host ISPS description
target ISPS description_,_. v ._4host state deltas & microcode _SDVS . TRUE/

microcode & map = > target state deltas FALSE
map

Figure 9: Microcode Verification Using SDVS

First, ISPS descriptions of the host and target, and a map of the target to the host are input into SDVS. The

map includes a map of labels in the target to labels in the host (known in this paper as "map labels"). SDVS

then generates state delta descriptions of the target and host from the ISPS descriptions. Conceptually, one

state delta is initially created for each ISPS instruction. The state deltas of all instructions from one map label

to the next map label in each description are then symbolically executed to form another set of state deltas.

SDVS then constructs a ne" state delta of the form

{host state deltas & microcode & map target state deltas} where "host state deltas" refers to the state

deltas describing the computation between map labels in the host machine (similarly for target state deltas).

SDVS then assists the user in determining Ahether this state delta is true. If the state delta is true, iAc have

pro\ ed that the microcode correctl\ implements the instruction set.

As mentioned aboxe, the ISPS description of the target machine may be annotated because onl\

selected states in the target description may correspond to states of the host. SDVS abstracts a specification

24

.......

fro the annotated ISPS description. Call it the abstract specification. The abstract specification is consistent

with the target machine and must be proved consistent xwith the host machine executing particular microcode.

A typical abstract specification for the target lSPS description would be a state delta specification of each

target instruction. Each state delta would be of the form

[pre: pre-instr
env:
mod: {target machine variables}
post: post-instr]

where pre-instr is a formula specifying the variables before execution of the target instruction, instr, and

post-instr is a formula specifying the \ariables after execution of instr. The abstract specification can also be

hand-generated.

In practice verification and simulation techniques are used in conjunction to achieve a high level of

confidence that the microcode correctly implements the computer instruction set. The descriptions of the

target and host machines are assumed to be correct in the verification method. These machine descriptions

are large. and thus. it may be difficult to haxe a high le\el of confidence in them. Either simulation or a

ccrrectness proof v, ith an abstract specification can increase the level of confidence in each machine

description.

By supplying sample input \alues, simulation gives us a "quick and dirt\" evaluation of each
description. A certain degree of confidence in each specification is obtained with simulation, but there is

usually a strong possibility of undetected errors. To increase the degree of confidence in each specification,

each specification can be shown to be consistent with an abstract specification via symbolic execution and

simplification. The abstract specification, defined as a state delta, may initialize input variables to data values

-* and thus, achieve what simulation does. The abstract specification may not initialize any variables and the

proof that each machine specification is consistent with the abstract specification may suffice for verification.

And of course, the abstract specification may initialize some variables and not others, and thus. gixe us

something less than complete verification. but something more than simulation. With confidence in each

michine description. symholic execution, simplification, and mapping are used to achie\e a high le'el of

confidence that the microcode correctl\ implements the instruction set.

4

25

"~~~ V'- -:.- '" '.'",,, '".'',.'". .."--".-",..-".".-, .-", -" -. ''''4 ' ." " "." -' -.-.". ''' - , - " "

SECTION I!
A CASE STUDY

A. MACHINE DESCRIPTIONS

To discoN er and solve both theoretical and practical problems with microcode verification using SDVS,

a small "toy" computer has been designed which contains man\ features relevant to a real computer. This

computer, called the H-machine. is structured around a simplified version of the AM2901. a widely used

microprogrammable arithmetic/logic unit (Al.U).

In the manner previously discussed, the H-machine is specified at two levels of abstraction. The

instruction set level description is called the target machine and the microcode level description is called the

host machine.

The target machine is the computer architecture as seen by a programmer. Figure 10 contains a

diagram of the target machine. It has a memory. TMEM, that stores both data and instructions, and four

registers. Two of the registers, RI and R2. can be referenced in target instructions: they can be accessed b%

the programmer. The other two registers, PC (program counter) and TIR (instruction register), are used for

fetching, decoding. and executing target instructions. There are eight target instructions in the instruction set.

Figure 11 lists the instructions and their descriptions.

Consider the LOAD RI instruction. The execution of LOAD RI causes data in TMEM to be moved to

RI. Suppose there is "LOAD R1 15" at locations 0 and 1 in TMEM and PC contains the value 0. The first

word of the instruction is fetched from TMEM and stored in 'FIR. PC is incremented to 1. The instruction is

decoded. The second word of the instruction is fetched and stored in TIR. It contains the address, 15, where

the data is located. PC is incremented to 2. The address is used to fetch the data and then the data is stored in

R 1. PC contains the location of the next instruction, and the cycle begins again.

Appendix A contains the ISPS description of the target machine. The main routine is a cycle of

fetching. decoding, and executing target instructions.

Figure 12 depicts the same computer. but at the microcode level. In the host machine, machine

components \%ere adced for fetching and decoding the microcode. Also, registers and data paths controlled

Mx the microcode ere added. Microcode programs in the microcode memory, UM, interpret target

mntructions. [he format of the microinstruction is described in Figure 13. The ISPS description of the host

machine is in Appendix B. The microcode initialization is in Appendix C.

27

.. %

TME

INS T.ETCH

iNST.DECODE.EXE R

Figure 10: Target Machine

1 As an example, the LOAD RI instruction is interpreted by executing 8 microinstructions. 3 of which

are for fetching and decoding. The following summarizes the actions of the 8 microinstructions executed to

perform the loading function:

1) MAR - RAM.2901[151]: SEQ.MUX 1 instruction fetch

2) RAM.2901[15] - RAM.2901[151 +I: HIR a-HMEM[MAR];, SEQ.MUX ~-2

3) SEQ.MUX '- INST.OP decodc

4) MAR -RAM.29011151: SFQ.MUX - INST.OP + 1 execution of LOAD R I

5) RAM.2901[15] a- RAM.2901[151 + 1: MFM.IO a- HMEM (MAR]: SEQ.MUX -INST.OP +2

6) MAR a- MEMlO0: SEQ.MUX a- INST.OP + 3

7) MEMlO0 - HMEM[MARI: SEQ.MUX ~- INSTOP - 4

*8) RAM.2901[1] a-MEM.JO: SEQ.MUX -0

28

Target Instruction Abbreviation Description
1000 00001 00000000 LOAD R1 address RI <-TMEM[address]

address

1001 0000 1 00000000 LOAD R2 address R2 <. TMEM[address]

address 2

1010 0000 1 00000000 STORE R1 address TMEM[address] <- R1
address

* 1011 . 0000 00000000 STORE R2 address TMEM[address] <- R2
address

1100 0000 000 ADD RI <. R1 + R2

1101 0000 000000007 MULTBY5 R1 (RI 5

1110 0000 00000000 JUMP address PC <- TMEM[address]
address

1111 0000 00000000 j STORE PC address TMEM[address] <- PC + 1
address

Figure 11: Target Instructions

B. CORRECTNESS PROOF

As described in Section IE a mapping must be defined from the target machine to the host machine.

I o define the mapping, the main routine of the ISPS description of the target machine is labeled as follows:
REPEAT

BEGIN
TLOOP: INST.FETCH() NEXT

INST .DECODE .EXEC(
END

The main routine of the host machine is labeled as follo s:

29

4 HMEM

RAM.2901

E EXCJE

MIR

II A LU

- - --- -DESTINATION

CONDITION. BITSrMA

- - - - - - - - - -

Figure 12: Host Machine

30

Bir Field Name Description
src.2901 ALU source(.,)
op.2901 ALL' operation

2.' dest.2901 AIU destination(s)
spare

22 c.in ALU carry-in
20-21 seq.mux.slcc control line for register SEQ.MUX (instruction sequence)
IQ ld.ir control line for register HIR
18 ld.mar control line for register MAR
17 oe.db control line for storing data in HMEM
16 r.wf control line for fetching data from HMEM
12-15 A.adr one of 16 registers in ALU
*8-, B.adr one of 16 registers in ALU
0-7 next.adr next microinstruction address

Figure 13: Microinstruction Format

REPEAT
BEGIN

AMD2901.SIMPLIFIED(...) NEXT
MEM.IO(...) NEXT
SEQ.MUX(...) NEXT
MAR(...) NEXT
HIR(...) NEXT

HLOOP: MIR=UM[SEQ.MUX]
END

The state at TLOOP corresponds to the state at HLOOP where SEQ.MUX = 0, Ri is mapped to

RAM.2901(I], R2 is mapped to RAM.2901[21. PC is mapped to RAM.2901[151, TIR is mapped to HIR, and

TMEM is mapped to HMEM. This means the state in the target machine before a target instruction fetch

must correspond to the state in the host machine before a target instruction fetch.

Symbolic execution of the target machine from TLOOP to TLOOP results in 8 state deltas, one for each

target instruction. These state deltas comprise the abstract specification SDVS derives from the annotated

ISPS description of the target machine. Each of these state deltas specifies the state change resulting from the

execution of a target instruction on the target machine. Call these state deltas target state deltas. Between 5

and 8 ISPS instructions are symbolically executed to derive each target state delta.

Symbolic execution of the host machine from HLOOP to HLOOP specifies the state change resulting

from the execution of a microinstruction. About 30-40 ISPS instructions are executed for each

microinstruction and 4-8 microinstructions implement a target instruction. Therefore. about 100-300 ISPS

instructions are executed for each target instruction in the host description compared with 5-8 ISPS

instructions in the target description. The theorem stating the correctness criterion is:

31

Theorem 1:

[pre: (ISPS host)
(MAP)
(MICROCODE)

env:
mod:
post: (ISPS target)]

(ISPS host) is an abbreviation for the set of set deltas that result from the symbolic execution of the

ISPS description of the host machine between map labels. The notation (ISPS host) is input to SDVS where

"host" is the name of the file containing the ISPS description of the host machine. Similarly. for (ISPS

target). (ISPS target) represents the SDVS derived abstract specification. (MAP ...) and (MICROCODE ...)

abbreviate the mapping between machines and the microcode initialization, respectively. The current form of

the map assertion for the H-machine is

(MAP PC (RAM.2901[151) EQ)
(MAP R1 (RAM.2901[1]) EQ)
(MAP R2 (RAM.2901[21) EQ)
(MAP TIR (HIR) EQ)
(MAP TMEM (HMEM) EQ)
(MAP TARGET

(MACHINE\upc SEQ.MUX MACHINE\ROM UM RAM.2901115] RAM.2901[1]
RAM.2901[2] HMEM HIR))

(MAP TARGET\OTHERSTUFF
(ENTRY IO.R.WF DATA.ENABLE MEMDATA ADR MEM.IO EXEC
DESTINATION SOURCE P2901 RAM.2901[0] RAM.2901[31
RAM.2901[4:141 S R ALU C.IN.2901 I ALU.D.BUS B.ADR.2901
A.ADR.2901 AMD2901.SIMPLIFIED CONDITION.BITS SELECT Y X MIR
MARLOAD MARDATA MAR IRLOAD INSTRUCTION
MACHINE\OTHERSTUFF))

(MAP TARGET\ROM (MACHINE\ROM UM))
(MAP TARGET\upc (MACHINE\upc SEQ.MUX)

Also, consider a hand-generated abstract specification for the target machine. The abstract specification

for each target instruction on the target machine takes the form:

[pre: pre-instr
env:
mod: {target v'ariables}
post: post-instr]

Appendix I) contains a hand-generated abstract specification for the target machine of the H-machine

example. Each of the eight state deltas in the abstract specification is given one of the following names:

loadrl.sd. loadr2.sd, storerl.sd, storer2.sd, rladdr2.sd. rltimes5.sd, jump.sd, and storepc.sd. The theorem

asserting that the hand generated formulas are consistent with the ISPS description of the target machine is:

32

- b - - -I-- T

Theorem 2:

[pre: ((SPS TARGET.ISP))
en*

mod:
posz: ((EVAL loadrl.sd) (E\'AL loadr2.sd)

(EVAL storerl.sd) (EVAL storer2.sd)
(EVAL rladdr2.sd) (EV*L ritimes5.sd)
(EVAL jump.sd) (EVAL storepc.sd))]

The proof commands submitted to SDVS to prove Theorem 2 are

((readaxioms l3SAXIONIS)
(prove macro.sd
(prove loadrl.sd (rewrite 1(.PC-t + + (16))(15:0>1 chop) 4

(prove loadr2.sd (rewrite J(.PC + + 1(16))(l15:0>1 chop))
(prove storerl.sd (rewrite I(.PC+ + 1(16))(15:0>1 chop) 4

(prove storer2.sd (rewrite J(.PC +- + 1(16))(15:O>1 chop) 4

(prove rladdr2.sd (rewrite I(.PC + +l1(16)K1:0>1 chop))
(prove rltimes5.sd (rewrite I(.PC±+ + 1(16))(15:0>1 chop) 4

(prove jump.sd (rewrite J(.PC + + 1(16))(15:0>1 chop))
(prove storepc.sd (rewrite 1.PC± -416))(15:0>1 chop) 4)

Tlhe proof command "~' means symbolicall\ execute mhe ISPS program until the goal is reached or execution

has halted, and apply some axioms automatically. IThe "chop" axiom is not applied automatically and must

be inxoked by the user. The chop axiom is used to simplify bitstring expressions. In this example the

application of the chop axiom allows SD\S to simplify the expression (.PC + + 1 (16)) (15D0 to

* (.PC +~ + 1(16)) because SDVS determines that adding the constant bitstring with value 1 and length 16 to

the bitstring PC of length 16 will not overflow PC. The proof commands can be submitted interactively or

processed as a batch job.

The same hand-generated state deltas can be proved consistent with the ISPS description of the host

machine. Because the host machine uses names that are different from the abstract specification, a mapping

must be specified.

4-3.

SECTION III
FUTURE CONCERNS

i \ o concerns are mentioned for future consideration. The first concern is the feasibilit\ of SDVS for

real computers. Current1!. it takes 1-2 hours to execute the ILOAD R1 instruction on the host machine. The

host machine is only 3 1/2 pages of ISPS code. A real machine can be more than 30 pages of ISPS code.

As in most verification systems, the majorit% of the time is spent in the theorem prover. In order to

reducc the verification time, it app,,,:s that signig.int ex'perimcntation is necessar. (1) to find a proper

halance between automated deduction and user supplied proofs. (2) to construct a good set of axioms for the

four theories, and (3) to develop heuristics (or tactics) for automated deduction. Also. this is a prototype

system. It is anticipated that one or more orders of magnitude improvernnt can be made with appropriate

seftware engineering.

The second concern is whether the target machine should be specified in ISPS. If target instructions

can be easily specified with state deltas it ma, be desirable to eliminate the ISPS description of the target

machine because

1) the ease of labeling iSPS descripions and mapping labels depends on the st\le of the ISPS
programmer. and

2) it is more feasible to symbolically execute and simplif. one ISPS description than twk o ISPS
descriptions

We are currently working on a way to abstract the computer language semantics from the ISPS description of

the target machine in an efficient manner. SDVS will now be applied to larger examples, "real" computers.
With this experimental data, performance issues will be addressed.

35

0%-

REFERENCES

[I] Mario R. Barbacci, Gary E. Barnes. Roderic G. Cattell. and Daniel P. Siewiorek.
The 1SPS Computer Description Language.
CMU-CS-79-137, Carnegie-Mellon University. Computer Science Department, August, 1979.

121 Stephen D. Crocker.
State Deltas: A Formalism for Representing Segments of Computation.
PhD thesis. University of California. Los Angeles, 1977.

[31 C. A. R. Hoare.
An Axiomatic Basis for Computer Programming.
Coimninuications of the ACM 12(10):576-58R, 583, October, 1969.

[41 Leo Marcus.
Dynamic and Static Reasoning in Program Verification.
Technical Report ATR-82(8478)-2, The Aerospace Corporation, June, 1982.

(5] L. Marcus and J. V. Cook.
SD VS User Manual.
Technical Report ATR-84(8478)-1, The Aerospace Corporation. 1984.

.13

,a

* 37

, t . t..- .

VTr 17 T)

APPENDIX A
ISPS DESCRIPTION OF TARGET MACHINE

FARGE 1Y():
BEGIN
** GLOBALN\ARIABLES *

TIR<15:0>,
1 MEM10:127](15:.O
R1(lS:OX
R2(15:0>,
PCK15:O>

MAPPINGS *

I NS 1i.OP(3:0> T1R(15:12>
** MAIN.ROUTINE *

il, f[RYO {MAIN}
BEGIN

REPEAT
TLOOP: = BEGIN

INST.FETCHO NEXT
INST.DECODE.EXEC()

END
END

*FETCH .INSTRUCTION .FROM1.MIEMORY
iNsT.FETCHO:

BEGIN
TIR =TMEM[PC] NEXT
PC =PC+1

END
*DECODE.OPERATION .AND.EXECUTE *

INST.DECODE.EXEC()
BEGIN

DECODE INST.OP =>

BEGIN
'1000: = LOAD.R1:=

(INST.FETCH() NEXT Ri TMEMITIRI),
1001: LOAD.R2:

(INST.FETCH() NEXT R2 =TMENI[TIR]),

'1010:= STORE.R1:
(INST.FETCH() NEXT TMEM[TIRJ = Ri),

'1011:= STORE.R2:
(INST.FETCH() NEXT TMEM[TIR] = R2),

1100:= RL.ADD.R2:= (RI = Ri+R2).
'1101:= RI.TIMFS.5 (RI = RI*S).
1110:= JUMP:=

(INST.FETCH() NEXT PC = TIMEM[TIRI),
'1111 := STORE.PC:

(INST.FFTCHO NEXT TMEM[TIRJ = PC)
END

END

39

79 % N
k b.k

APPENDIX B
ISPS DESCRIPTION OF HOST MACHINE

Nl:ACHINE() =
* BEGIN

** REGISTIERS**
HIR(INSTRLC1'ION(15:0O)IRLOAD<>)K1

5 0) =

(IF IRLOAD = >(HIR = INSTRUCTION)).
M AR(M \RDATA< 15: OXM AR LOAD0>1(5:0>: =

(IF MARLOAD = >(MAR =MARDATA)).

\IIR<32":0>

INSTRUCTIONY.ORM AT
.IST.OP(7:0> := HIR(15:8>

** MICRO.INSTRUCTION.FORMAT
*

1.ALU<8:0>: = MIR(32:24X
OEYF() = MIR(23>.
C.IN() = MIR(22).
SEQ.NMUX.SLCT<1:0): = MIIR<21:20>.
LD.IR(>: = MIIR(19>.
LD.M ARK) = MIR(18>.
OE.DB<>: MIR(17X
R.WF<>:= MIR(16X

B.ADR(3:O>: MlR<ll:8>,

NEXT.ADR(7:O>: = MIR(7:0>

*MEMORIES *

UM[0:255] (32:0),
HMEM[O:1271 (15:0>

*MULTIPLEXERS *

SEQ.MvUX(X<8:0>,.Y<S:O>.SEcr(1:o>)<
8 :o>:=

BEGIN
DECODE Sf-LIECIKO> =)>

BEG IN
0: =SEQ.\iUX X .

1=SIQ.,%LX =

F\D1
I)D

OLIP 0 .\I2OSMIjEDI
CONI)I I ION.BI I S<3:0>

**,l L. I HIS.IS.A.SINIPI -fFIH)AM2901
.MD)290L.SIMPI IFIEI)(A\.AI)R.2901(3:0>,.IVI)R.2 9Ol(3:O).

Al..).BUS<] 5:0. 1(8:0>. C.lN.2901(1:0))(15:0>:
BFGI\
**Al.U.OUIpU 1*

41

FEQLO<>:~~ CON. Dri- BIS<I

!0%LR<>: = CONDITION.BITS(1>.

SIGN<)-.= CON DITION.BIiSK3),
C.OUT>: = CONI)ITION. B FS<0>

ALU:IN\PLT
SRC.2901(2:0>:= 1(3:6).
OP.2901(2:0>: = 1<5:3).
DEST.2)901<2:0>: =1(2:0

r *,aALU1OCALA\ARIABLES**
:\LL*<16:0>.
RK15:0>. I INPUTf 10 ALU

S<15:0> IS INPUT TO ALL'

ALU.MEMORIES
RAM.2901[O: 151(15:0>

MAPPING
F.290 I<15: O0> = A LU(15: 0>

** INSTRUCTION .CYCLE**

* P2901() MAIN}:= !2901 PROCEDURE

* BEGIN
SOURCE() NEXT
EXEC() NEXT
DESTIN ATION()

END

**ACCESS.COMPUTATION **

SOURCE() := ISOURCE CALCULATION
BEGIN
DECODE SRC.2901 =>

BEGIN
0: =AQ: = (R. RAM.2901[A.ADR.2901))

: = AB: (P.R RAM.2901[A.ADR.2901] NEXT S = RAM.290'IIB.ADR.29011P.

#2 ZQ: (RO0NEXTSO = .

#3: = ZB = (R. 0 NEXT S = RAN4.2901[B.ADR.29011).

#4: = ZA = (R. 0 NEXT S =RANI.2901[A.ADR.29011D.

#5: =IDA.: (R =ALU.D.BUS NEXT S = RAM.2901[A.ADR.2901]).

6: DQ: = (R =AL.U.D.BUS NEXT SO =0

#7: =Dh:= (R AI.U.D.BUlS NEXT S =0
E NDI

END.

D)ES FN AION(): IDESTINATION CALCULATION

D)ECOD)EI)EST.2901 =>
BEG IN
#0 : D l)ST0.Fl .FQ: = ..\D2901.SIMPLIFIEI) F.2901)

42

I1 =IES iFl ('\\ID90.SIMI-AFIED =F.2901)

#:DEST2.A)~.i2B: z(AN113290.SIN PLIFIED = RAM.2901[A.ADR2901] NEXT
RA\\.2901[B.AI)R.2901] = F.290',)

#3: = DES*T3.F)Y.FB: = (AMD29O1.SIMPI IFIED = F.2901 NEXT
RA\129011[B.AI)R.2901] = F.2901).

#4 : =DEST4.FY.SRBQ: = (AMD290L.SIMPLIFIED =F.2901).
5 : =DESTS.FY.SRB: = (AMD29O1.SIMPLIFIED = F.2901),
#6 :=DEST6.FY.SLBQ:= (AMD29O1.SIMPLIFIED =F.2901),
#7 :-DEST7.FY.SLB:= (AMD29O1.SIMPLIFIED = F.2901)
EN D

EN 1)

I* N S T RU CTION. EX EC UT 1 ON
EX EC(

BEGIN
DECODE OP.2901 =)>

BEGIN
0: :=R.ADD.S: = ALU =R + S +i C.IN.2901.
#I:= S.SUB.R: (All S - R + C.IN.2901)
#2 : =R.SUB.S: =(ALU = R -S+ C.IN.2901).
3: =R.OR.S:=(ALU = R OR S)
#4:=R.AND.S:=(ALI -RANDS).
#5:= R.MASK.S:= (ALL 0 NVRND S).

6:= R.EXOR.S: (A LLU R NOR S),
#7:= R.EXNiOR.S:= (ALL' :-REQ\VS)

* END NEXT
FEQLO = F.2901 EQI. "0000 NEXT
SIGN = F.2901(15> NEXT
C.OUT = ALU(16)

END

END !END OF AM2901 DESCRIPTION

**MEMORY.IO *

MIEM.IO(ADR(15:0>.M IEMDATA(15 :0>I)ATA.ENABLE(>,IO.R.WF(>)(15:O>
BEGIN
DECODE DATA.EN ABLECa IO.RAWF =>

BEGIN
'00: =NO.OPO,

! NO DATIA ON BUS, BUT WAR ITE
*~ = => ERROR.BUT USE THIS AS NOP

10 : = (HMEM[AI)R] = MEMDATA NEXT
MEM.IO = \IEMDATA).
?DATA AND WRITE

'01 := MEM.1O HMEMLADRI.
!NO DATA, BUT READ

'1=STOP()
!D)ATA. BUT REALD > ERROR

43

\IACHINE.DESCRIPTION*
ENTRY() {\N
BEGIN

MIR =U.M[O] NEXT
C.'CREPEANI

BEGIN
AMD2901.SI\MPLIFIED(A.ADIR.B.A\DR.MEMJO.1.1.AL-U,. CAN) NEXT
MEM.1O(.\IAR.AMI)29O1.SIMIPLIFIE'D.OE.DB.R.WF) NEXT
SEQ.MLiX(NEXT..\IJR.I\S' .GIX.SFQ.\MLN.SI-C'FNEX'I
MAR(AM\D29O1.SiII)LIFIEID.I.1).NIA~R) NEXI1
HIR(MEM.IO.L-D.IR) NEX I

HI OOP: = MIR = LM[SFQ.\IUX]
END

* END)
- - END

44

APPENDIX C
MICROCODE

\iicicodu in Hexidecinial Comments
** INSTYETCH *

Ll[0j="10004F001 MA R K- RAM.2901j15]
L %1I1V "0C0490F02 R A M.2901[151 K- RAM.2901115 + 1:

HIR (-HMEM[MAR]

I %1"j="oolooo0**
DECODE **

1~ \~21 000~0000SEQ.MUX K- INSTOP
** LOAD.RI **

L\1j'N]"10004F0S1 M'AR <- RAM.2901[15]
1[iSlj="0C3410FS2 RA M.2901(151 K- RAM.2901[151 + 1:

MEM.10 <- HMNEM[MARI
UlN1"S2='1DS0400S3 MAR <- MEM.1O
U.Ml "831 = "000010084 MEM.1O K- HMEM[MAR]
L-M0["841= "IDB000100 RAM.2901111 <- MEM.1O

*LOAD.R2 *

L-Ni11"90)= 10004F091 MAR K- RAM.2901[151
1iNI["911]="0C3410F92 RA\\M.2901[151 <- RAM.29011151 + 1:

MEN4.O K- HMEM[MAR]
UlM["9-1="ID04009'3 MAR K- MEM.1O
UNI["931= "000010094 MEMLO0 K- HMEM[MARI

I~"94] = 1IDBOOO200 RAM.2901[21 K- MEM.1O
** STORE.R1 **

U~lff'AO= 'lOOO4FOA I MAR K- RAM.2901115]
Li\I["A 1] = '0C3410FA2 RAM.2901[151 K- RAM.2901[151 + 1I

MEM.1O K- HMEM[MARJ
IJM['A2J "lD80400A3 MAR K- MEM.IO
L\4["A3 = "119021000 HMEM[MARJ K- RAM.290111

** STORE.R2 **

1JM['B0]= "10004F0B1l MARK<- RAM.2901[151
IML"BiI= "0C3410FB2 RA M.29011151 K- RA M.2901[15] + 1:

MEMIG1 <- HMEM[MARJ
IiMI-1321 I7DS0400H3 MAR K- MEM.1G
t'\f("B3j= "119022000 HMIEM[MAR] K- RAM.2901[2]

** R1.ADD.R2 **

L \11CCfl-04002100 R.\M.2901[ljK<- RAM.2901[1J-+-RAM.2901[21
R1:FIMES.5 *

U\I[l)(111 I H00131)1 RANI.2901[31 K- Rr\M.2901t11
* \1["[)11= '04300311D2 RAM.2901[11 <- RAM.2901t11±+RAM.2901131

LiI"12 '043003,11)3, RAIM.2901111 K- RAM.2901[1I + RAM.2901131
Nl\["I) "o4300311)4 RANl.2901[1] K- RAN1.29011il-RAM.2901[31
Ii'1")4~"043003110(0 RAM.2901j11) K- RAM.2901111+ RAM.2901[31

*JU'NIP *

L\IfF0 Vo i'I0004FOFK I MAIR K- R1\M.29011151
LNIIlEE1= "0C34]0F12l RAM.2901[151 K- RAM4.2901[15S]+ 1:i

MEM .10 K- H\IEM[MlAR]
INjF="1D8)0400hF3 MIAR K- \1IEAM.G

45

.

LM['E3] = 0000100E4 MEM.IO(<- HMEMIMAR]
* INI[E4] =1"DBOOOFOO RAM.2901[15] <- MEM.IO

** STORE.PC

UM["FO] = "10004FOF1 MAR <- RAM.2901[15]
UMI['F1J= "0C3410FF2 RAM.2901[151 <- RAM.2901[151 + 1;

MEM.1O <- HMEM[MARJ

UM["F2] = 1D8400F3 MAR <- MEM.IO
UM[LF3]="10142F000 HMEM[MAR](<- RAM.2901[15] +1

4-6

.N7

M - W T . .

APPENDIX D
ABSTRACT SPECIFICATION OF TARGET MACHINE

load ri.sd:

[SD pre: (.TMEMU.,PCII=LOAD.RI -OP I.PCI It 127 .TARGET\upc=TLOOP
I-OAD.R1-OP=32768(16) I.TMEM[I(.PC± +1(16))15:OI1I le 127)
(PCOVERING TMEM[0:1271 TMEM[.PCI)

env': (TARGET\ROM)
mod: (RI PC TARGET\upc TIR TARGET\OTHERSTUFF)
poc: (#R = .TMIEM[I.TMvEMII1(.PC + +1(1 6))(15:0>lhl #PC=(.PC + 42(16))<15:0>)

#TARGET\upc =TLOOP]

load r2.sd:

* ~ [ID pre: (.TMEM[I.PCII=LOAD.R24-OP j.PC It 127 .TARGET\upc=TLOOP
LOAD.R2 -OP =36864(16) [.TMEM[I(.PC + +1(16))(15:O)I]Ile 127)
(PCOVERING TMEM[0:127] TMEM[.PC])

env: (TARGET\ROM)
mnod: (R2 PC TARGET\upc TIR TARGET\OTHERSTLFF)
post: (# R2 =.TMEMII.TMEM[I(.PC + +1(16))(15 :0>1111 # PC =(.PC + +2(16))(15 :0>)

#TARGET\upc =TLOOP)

storeri .sdl:

'SD pre: (.TMEMI.PCII=STORE.R1'-OP [.PCI It127 .TARGETF\upc=TLOOP
STORE.R1 4-OP=40960(16) I.TMEM[W.PC + +1(16))<15:0>]I le 127)
(PCOVERING TMEM1O: 127] TMEM[.PCI)

env': (TARGET\ROM)
mod: (PC TARGET\upc TIR TMEMII.TMEM[I(.PC± + 1(116))(15:0>I111

TARGET\OTHERSTUFF)
post: (# TMEM[I.TMEM[I(.PC ++ 1(16))(15:O>111I]= .R1 # PC =(.PC + +2(16))(15 :0>)

#TARGET\upc =TLOOP]

store r2.sdl:

[SD pre: (.TMEMjl.PCI1=STORE.R2-OP jPCIit 127 .'IARGET\upc=TLOOP
STORE. R2 i-OP = 45056(16) I.TMEM[I(.PC ±+ 1(16))(15:>I1I le 127)
(PCOVERINO TMEM[O: 127] TMEM[.PCI)

env: (TARGET\ROM)
mod: (PC TARGET\upc TIR TMEM[l.TMEM[l(.PC± +](16))(15:0>1111

TARGET\OTH ERSTUFF)
post: (#1 MEM[I.TM\EM[I(.PC + + (16))<15:0I1]1= .R2 #PC =(.PC+ +2(16))(15:0>)

#TFARGET\upc =I-OOP]

47

ri add r2.sd:
[SD pre: (.TMEM[I.PCI]=R1.ADD.R2-OP I.PCI IL 127 ;.ARGET\upc=TLOOP

R.A DD. R 2 -OP = 49152(16))
(PCOVERING TMEMI[O:1271 TMENf[.PCI)

en*: (TFARGET\ROM)
mod: (PC TARGET\upc TIR Rl TARGET\OTHERSTUFF)
post: (#R1 =(.R1 + +.R2)(15:O> #PC=(.PC+ -- 1(16))(15:O>)

#TARGET\upc =IOOP]

rl tjmes5.sd:
[SD pre: (.TMEM[I.PCII=R1.TIMES.5 -OP I.PC It 127 I'ARGEIT\upc=TLOOP

R1.TIMES.5-OP=53248(16))
- (PCOVERING TMEM[O:127] TMEM[.PC])

env: (TARGET\ROM)
mod: (PC TARGET\upc TIR Ri TARGET\OTHERSTUFF)
post: (#R = (.R1**5(4))(15:O) #PC=(.PC+ +1(16))(15:O>)

#TARGET\upc =TLOOP]

jump.sd:
* [ISD pre: (.TMEM[I.PCI]=JUMP4-OP I.PCIIt 127 .TFARGET\upc=TLOOP

JUMP- OP =57344(16) I.TMEiM[W.PC+ +1(16))(15:O>)l lle 127)
(PCOVERING TMEM[O:127] TMEM[.PC])

env: (TARGET\ROM)
mod: (PC TARGET\upc TIR TARGET\OTHERSTUFF)

* post: (#PC =.TMEM[I.TMEM[I(.PC + + 1(16))<15:O>1I1)
#TARGET\upc =TLOOP]

* storepc.sd:
[SD pre: (.TMEM(.PCI=STORE.PC-OP I.PC It 127 .TARGET\upc=TLOOP

STORE.PC -OP =61440(] 6) I.TMEM[I(.PC + +1(16))(1 5:O>j]j le 127)
(PCOVERING TMEM[O:127] TMEM[.PC])

en%-: (TARGET\ROM)
mod: (PC TAR GET\upc TIR TMEM[I.TMEM[I(.PC + + 1(16))(15:>1111

TARGET\OTHERSTUFF)
post: (.#TMEM\[I.TMEM[I(.PC + +1(16))(1S:O>111=C.PC++ 2(16))(15:O>

A ~#PC =(.PC+ + 2(16))(15:0>) #TARGET\upc =TLOOP]

48

ITI

% P

% e

%-e4

